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Abstract. Despite interventions intended to reduce impacts of coastal hazards, the risk of damage along the US Atlantic 

Coast continues to rise. This reflects a long-standing paradox in disaster science: even as physical and social insights into 

disaster events improve, the economic costs of disasters keep growing. Risk can be expressed as a function of three 

components: hazard, exposure, and vulnerability. Risk may be driven up by coastal hazards intensifying with climate change, 

or by increased exposure of people and infrastructure in hazard zones. But risk may also increase because of interactions, or 10 

feedbacks, between hazard, exposure, and vulnerability. Here, we present a data-driven model that describes trajectories of 

risk at the county scale along the US Atlantic Coast over the past five decades. We also investigate indications of feedbacks 

between risk components that help explain these trajectories. Our findings suggest that spatially explicit modelling efforts to 

predict future coastal risk need to address feedbacks between hazard, exposure, and vulnerability to capture emergent 

patterns of risk in space and time. 15 
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1 Introduction 

Risk reduction in developed coastal zones is a global challenge (Parris et al., 2012; Sallenger et al., 2012; Witze, 2018; 

Wong et al., 2014). In general terms, risk can be expressed as a function of hazard, exposure, and vulnerability (NRC, 2014; 

Samuels and Gouldby, 2009). Hazard is typically expressed as the likelihood that a natural hazard event will occur (e.g., a 

recurrence interval for a storm of a given magnitude) or as a chronic rate of environmental forcing (e.g., a rate of sea-level 5 

rise). Exposure tends to capture either the economic value of property and infrastructure that a hazard could negatively 

impact, or the number of people a hazard could affect. Vulnerability can reflect a wide variety of dimensions, but in physical 

terms (relative to social metrics) vulnerability generally represents the susceptibility of exposed property to potential damage 

by a hazard event (NRC, 2014). Although the reduction of disaster risk – across all environments, not only coastal settings – 

is an intergovernmental priority (UNISDR, 2015), a paradox has troubled disaster research for decades. Even as scientific 10 

insight into physical and societal dimensions of disaster events get clearer and more nuanced, the economic cost of disasters 

keeps rising (Blake et al., 2011; Mileti, 1999; Pielke Jr. et al., 2008; Union of Concerned Scientists, 2018). 

 

There are a number of possible explanations for this trend. Economic costs could be rising because natural hazards, 

exacerbated by climate change, are getting worse (Estrada et al., 2015; Sallenger et al., 2012); because with migration and 15 

population growth more people are living in hazard zones (NOAA, 2013); or because more infrastructure of economic value, 

from highways to houses, now exists in hazard zones (AIR Worldwide, 2013; Desilver, 2015; Union of Concerned 

Scientists, 2018). These drivers are typically addressed separately – but they are not mutually exclusive. 

 

An alternative explanation for the disaster paradox is that environmental, population, and infrastructural drivers are 20 

systemically intertwined, resulting in "disasters by design" (Mileti, 1999) – unintended consequences of coupled interactions, 

or feedbacks, between natural forcing and societal shaping of the built environment. An example of one such feedback is 

when infrastructure development in hazard zones destroys natural features that would otherwise buffer hazard impacts (e.g., 

the loss of coastal wetlands that would have absorbed storm surge) (Barbier et al., 2011; Temmerman et al., 2013). An 

example of another feedback is when hazard defences stimulate further infrastructure development behind them – a 25 

phenomenon called "safe development paradox" (Armstrong et al., 2016; Burby, 2006; Keeler et al., 2018; McNamara and 

Lazarus, 2018; Werner and McNamara, 2007). While both feedbacks can increase hazard impacts without any change in 

natural forcing, climate change accelerates them. 

 

Investigations of coastal risk tend to focus on case studies of hazard, exposure, and/or vulnerability (Smallegan et al., 2016; 30 

Taylor et al., 2015), or on projections of future risk (e.g., Brown et al., 2016; Hinkel et al., 2010; Neumann et al., 2015). Few 

examine patterns of risk across large spatial scales (~102–103 km) or retrospectively over longer time scales (>101 yrs). Here, 

we develop a data-driven model to investigate how hazard, exposure, and vulnerability may describe trajectories of risk in 

space and time along the US Atlantic Coast, from Massachusetts to South Florida, at the county-level for the past 47 years 

(Fig. 1). Our findings suggest that spatially explicit modelling efforts to predict future coastal risk need to address feedbacks 35 

between hazard, exposure, and vulnerability to capture emergent patterns of risk in space and time. 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-159
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 24 May 2019
c© Author(s) 2019. CC BY 4.0 License.



3 
 

2 Methods 

Using the components of risk broadly defined by the US National Research Council (NRC, 2014; Samuels and Gouldby, 

2009), we represent coastal risk as a function of time (t) with the expression: 

𝑹(𝒕)  =  𝑯 𝑬 𝑽,            (1) 

where R is coastal risk, H is natural hazard, E is exposure, and V is vulnerability. We define hazard (H) in terms of chronic 5 

shoreline erosion (as opposed to the likelihood of a hazard event). We define exposure (E) in terms of the total property 

value of owner-occupied housing units in US Atlantic coastal counties. We address vulnerability (V) as a function of beach 

width, modulated by beach nourishment – the active placement of sand on a beach to counteract erosion – which functions as 

a buffer between hazard and exposure (Armstrong and Lazarus, 2019; Armstrong et al., 2016). For the purposes of this 

analysis, we limit our consideration to physical infrastructure; we do not address socio-economic or demographic 10 

vulnerability (Cutter and Emrich, 2006; Cutter and Finch, 2008; Cutter et al., 2006, 2008). 

2.1 Hazard 

We calculated rates of shoreline change in two different ways to compare their respective effects on risk over time. 

2.1.1 Shoreline-change rates from shoreline surveys 

First, we calculated "end-point" rates of change from surveys of shoreline position published by the US Geological Survey 15 

(USGS) (Himmelstoss et al., 2010; Miller et al., 2005). An end-point rate is the cross-shore distance between two surveyed 

shoreline positions, divided by the time interval between the surveys. Using the Digital Shoreline Analysis System (DSAS) 

tool for Arc GIS (Thieler et al., 2008), we cast cross-shore transects every 1 km alongshore to intersect the surveyed 

shorelines, and at each transect calculated the end-point rate for three time periods (Armstrong and Lazarus, 2019): 

"historical", from the first survey to 1960; "recent", from 1960 to the most recent survey; and "long-term", from the first 20 

survey to most recent (Fig. 2a, e, i; Fig. 3a). We calculated the median historical, recent, and long-term rates of shoreline 

change for each county alongshore. 

We used 1960 to differentiate between historical and recent shoreline-change rates because during that decade, beach 

nourishment overtook shoreline hardening to become the predominant form of coastal protection in the United States (NRC, 

1995, 2014). Cumulative, diffuse effects of nourishment are therefore embedded in recent and long-term rates of shoreline 25 

change (Hapke et al., 2013; Johnson et al., 2015). A historical rate calculated from shorelines surveyed prior to 1960 may 

better reflect environmental forcing in the effective absence of beach nourishment (Armstrong and Lazarus, 2019). These 

historical rates are not "natural" rates: human alterations to the US Atlantic Coast began long before 1960, with engineered 

protection, including seawalls, groyne fields, and limited beach-nourishment projects (Hapke et al., 2013). Here, we consider 

them a pre-nourishment "background" rate of chronic forcing. 30 

2.1.2 Shoreline-change rates from sea-level change rates 

To test an independent measure of chronic shoreline-change hazard, we also derived rates of shoreline change (Fig. 4a, e) 

from recorded rates of sea-level change (Holgate et al., 2013; PSMSL, 2018) and a USGS dataset of cross-shore slope for the 

US Atlantic Coast (Doran et al., 2017). We calculated spatially distributed rates of sea-level rise from annual tide-gauge 
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records maintained by the Permanent Service for Mean Sea Level (PSMSL) (Holgate et al., 2013; PSMSL, 2018). For each 

tide-gauge record, we linearly interpolated across gaps in the annual data. We smoothed the resulting continuous record with 

a 10-year moving average, and calculated the annual rate of sea-level change (Table S1). Because the tide-gauge locations 

are not evenly distributed alongshore, to find rates of sea-level change for the full extent of the US Atlantic Coast we linearly 

interpolated rates of sea-level change between tide-gauge stations, and calculated the median annual rate of sea-level change 5 

at each coastal county. To convert a vertical change in sea level to a horizontal change in shoreline position, we shifted 

shoreline position at each transect up (or down) cross-shore slope from USGS coastal lidar surveys (Doran et al., 2017) 

(Table S2). Linking the slope measurements to county shapefiles with a spatial join, we calculated median slope per county 

and then the horizontal distance that each annual vertical change in sea level moved the shoreline (Fig. 4a). 

The relationship between sea-level change and shoreline position is more complicated than the one abstracted in our 10 

deliberate simplification (Cooper and Pilkey, 2004; Lentz et al., 2016; Nicholls and Cazenave, 2010). Our estimation is 

effectively a "bathtub model" of change, controlled only by topography with no incorporation of wave-driven sediment 

transport or other shoreline dynamics. However, for this exercise, our method is useful for its simplicity – especially given 

the spatial scales under consideration – and for the independent estimation of shoreline change that it provides. 

2.1.3 Sign convention 15 

By the sign convention in our calculations, a negative rate of shoreline change denotes accretion (reducing hazard), and a 

positive rate denotes erosion (increasing hazard) (Fig. 2a, e, i). Hazard magnitudes are normalized by the minimum and 

maximum rates to range between 0–1. 

2.2 Exposure 

To represent exposure along the US Atlantic Coast, we used county-level Census data for the total value (adjusted to 2018 20 

$USD) of owner-occupied housing units for each decade from 1970 (Table S3) (Minnesota Population Center, 2011). 

Because property value data are sparse for the 2010 Census community survey (16 Atlantic coastal counties are missing), we 

instead used the 2009–2013 Census five-year survey. Several five-year Census surveys incorporate 2010, but we chose the 

2009–2013 survey because it provides full overage of all the Atlantic coastal counties, and its mean of total values is closest 

to the 2010 Census community survey (for those Atlantic coastal counties surveyed in 2010). We adjusted the county-total 25 

values of owner-occupied housing units to 2018 $USD and divided by the number of transects in each county to yield a 

proxy for property value per alongshore kilometre. Because of the range of values along the coast, we took a log-transform 

and normalized the results to fall between 0–1 (Fig. 2 b, f, j; Fig. 3 b). 

 

2.3 Vulnerability 30 

We represented vulnerability (V) with a two-part relationship that tracks beach width (Vbw) and beach nourishment (Vbn) over 

time: 

𝑽 =  𝟎.𝟓𝑽𝒃𝒏  +  𝟎.𝟓𝑽𝒃𝒘            (2) 
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Because the value of exposed property is not included in Vbw or Vbn, this formulation disentangles vulnerability from 

exposure – a subtle but important conceptual departure from the definition used by the National Research Council (NRC, 

2014; Samuels and Gouldby, 2009), which includes property values in vulnerability. 

We made the beach-width component (Vbw) inversely related to vulnerability, such that vulnerability increases as beach 

width decreases. We express the beach-width component as: 5 

𝑽𝒃𝒘  =  (𝒙𝟎  +  𝟏) –  𝒙,           (3) 

where x0 is maximum beach width and x is beach width. We then normalized by the maximum and minimum Vbw. Because 

the real measurements are unavailable, we assumed that in 1970 all counties had the same beach width (x). From this 

baseline, the county-scale shoreline erodes or accretes according to the linear rate determined by the hazard condition 

(historical, recent, long-term, or sea-level derived). Because we used counties as the smallest spatial unit of comparison, our 10 

assumption implies that each county is fronted by beach. The physical geography of the real coastline is, of course, more 

spatially heterogeneous. Our analysis is too coarse to capture, for example, change at isolated pocket beaches in a 

predominantly rocky coastline, but counties with rocky coastlines will reflect very low or null rates of shoreline change. 

For the beach-nourishment factor (Vbn), we collated beach-nourishment projects since 1970 by county from the beach-

nourishment database maintained by the Program for the Study of Developed Shorelines (PSDS, 2017). We took Vbn as the 15 

running total number of nourishment projects per county over time (summed annually), and normalized Vbn by the maximum 

total number of projects across counties as of 2016 (i.e., the county that nourished the most has Vbn = 1 in 2016). Each 

county starts with Vbn = 0 in 1970, and Vbn increases incrementally with every nourishment project within the county 

boundary. We initiated Vbn in 1970 to match the Census data for exposure (E). Because 80% of beach nourishment projects 

on the US Atlantic Coast have occurred since 1970, we excluded a relatively small number of events. To test the sensitivity 20 

of our vulnerability and risk results to the 1970 start date, we examined the relative effects of (1) initiating Vbn from the first 

nourishment project in our record (in 1930), and (2) excluding the Vbn term altogether (Fig. S1). Although the risk patterns 

resulting from these sensitivity tests changed in detail, their general characteristics did not. 

In our routine, until a county nourishes for the first time, beach width (x) changes according to the county median linear 

erosion rate (γ): 25 

𝒙 𝒕 = 𝒙𝒕!𝟏 +  𝜸𝒕            (4) 

The linear erosion rate (γ) applied to each county is either the (pre-normalised) historical, recent, or long-term shoreline 

change rate, or the rate derived from sea-level change, depending on the hazard scenario. The sign convention for γ is 

negative for erosion, and positive for accretion. 

Once a county has nourished – as determined by the empirical dataset of nourishment projects (PSDS, 2017) – beach width 30 

becomes a function of a linear erosion rate (γ), as in Eq. (4), and a nonlinear erosion rate (θ), which is applied to the 
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nourished fraction of the total beach width (µ) to capture cross-shore and alongshore diffusion of nourishment deposition 

across and along the shoreface (Dean and Dalrymple, 2001; Lazarus et al., 2011; Smith et al., 2009): 

𝒙(𝒕)  =  (𝟏 − µ)𝒙𝟎  +  µ𝐞!𝜽𝒕𝒙𝟎  +  𝜸𝒕𝒕
𝟏  ,         (5) 

where x0 is maximum beach width, θ is nonlinear erosion rate, µ is the fraction of the total beach width that the nonlinear 

rate applies to, γ is linear erosion rate, and t is the number of years since the last nourishment project. If a county nourishes at 5 

least once in a given year, its beach is restored to a maximum width in that year before it begins to erode. (Our minimum 

temporal increment was 1 year, and we assumed that nourishment always occurs at the end of a given year.) Maximum 

beach width (x0), nonlinear erosion rate (θ), and the fraction of beach width affected by the nonlinear rate (µ) are variables 

applied to the full spatial domain. Beach width (at the county scale) thus changes at a linear rate (γ), where a negative value 

is erosion and a positive value is accretion, with an additional nonlinear erosion rate (θ) over a fraction of the beach (µ) when 10 

nourishment occurs, until the beach is restored to maximum width by a subsequent nourishment project or reaches a 

specified minimum width (here, 10 m). The Vbn term is ultimately normalised by the maximum and minimum beach width. 

Because vulnerability is normalised, the minimum beach width that we specify (10 m) affects the length of time it takes to 

reach maximum Vbw, but does not affect the overall magnitude of V. A wider minimum threshold means that Vbw reaches a 

maximum faster, and vice versa. We used a minimum width of 10 m to avoid the numerical instabilities in Vbw that arise with 15 

a minimum width equal to or less than 0 m. The minimum width threshold does not affect the cumulative beach-nourishment 

factor. 

We test the effect of altering x0, θ, and µ on both vulnerability and risk, under historical hazard and linear erosion rates (Fig. 

S1; Table S4). Sensitivity testing shows that vulnerability over time is highest in the case of a narrow beach (x0 = 25 m) with 

a high nonlinear erosion rate (θ = 0.75) affecting a large fraction of the beach (µ = 0.75). Vulnerability over time is lowest in 20 

the opposite case (x0 = 100 m, θ = 0.05, µ = 0.25) (Fig S1). In calculating our results, we used a case in the middle of these 

extremes (x0 = 50 m, θ = 0.5, µ = 0.33), applying a value of µ similar to the value (µ = 0.35) used by Smith et al. (2009) and 

Lazarus et al. (2011). 

Like a ratchet, the cumulative beach-nourishment factor (Vbn) increases each time a county nourishes. The beach-width 

factor (Vbw) is comparatively more dynamic, reaching a minimum after a nourishment project (as the wide beach buffers 25 

property from hazard) but increasing as the nourished beach erodes and coastal properties become more susceptible to 

hazard.  

 

3 Results 

3.1 Risk trajectories 30 
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Our data-driven model generates a pattern of coastal risk that varies in space and time at county scale along the US Atlantic 

Coast (Fig. 1). From 1970, each county generates its own risk trajectory that represents the interaction of hazard, exposure, 

and vulnerability in that county (Fig. 1 a). For visualisation and analysis, we scaled each county by the number of 1 km 

transects they comprise (Fig. 1 a). The result is a matrix of 2386 km over 47 years, in which each of the 2386 (1 km) rows is 

associated with a county. Alongshore mean values for the whole US Atlantic Coast are taken from the full matrix so that 5 

they reflect the relative alongshore scale of each county (Fig. 1 b). 

We find that the collective trajectory of risk increases from 1970 to 2016 for all hazard scenarios – despite the occurrence of 

998 beach-nourishment projects, ostensibly intended to reduce risk, during the same period (Figs., 2, 3). The influence of 

beach-nourishment projects on vulnerability means that county-scale risk varies over time even if hazard forcing remains 

constant. Because hazard based on measured shoreline change (historical, recent, and long-term) is spatially variable but 10 

temporally static (Figs. 2, 3), changes in risk over time under this model condition are driven by either exposure or 

vulnerability.  

The overall risk trajectory also increases with the spatio-temporally variable hazard condition derived from rates of sea-level 

rise (Fig. 4). The alongshore mean rate derived from sea-level rise shows close agreement with the mean "recent" shoreline-

change rate, suggesting that our simplified "bathtub" representation of hazard is reasonable on a multi-decadal time scale 15 

(Fig. 5). 

Individually, not all counties register rising risk trajectories over time. To compare how individual counties contribute to 

mean risk, we ranked each county ranked by its risk index in 2016 (Table 1). We also examined in detail two examples of 

how individual counties responded to different hazards and beach-nourishment cycles (Fig. 6). Plymouth County, 

Massachusetts, demonstrates how vulnerability may respond to linear erosion rates (γ) that vary from eroding (negative, 20 

under the "historical" condition), to static (under the "long-term" and sea-level derived conditions), to accreting (positive, 

under the "recent" condition) (Fig. 6 a-d). Ocean County, New Jersey, demonstrates how the cumulative beach-nourishment 

factor (Vbn) can drive up risk (Fig. 6 e-h). There, Vbn causes the local maxima and minima in vulnerability to increase over 

time (Fig. 6 g), such that even when beaches are at full width, exposed property is still subject to vulnerability V > 0. Ocean 

County highlights how the cumulative beach-nourishment factor functions as a ratchet, forcing vulnerability to only increase 25 

over time. Because not every county practices beach nourishment, it is possible for a county to have V = 0 if its shoreline is 

accreting (e.g., Camden and McIntosh Counties, Georgia). A county that never nourishes will have a Vbn = 0, and if a county 

nourishes only once or twice then their Vbn will remain negligible (but not negative). However, mean vulnerability is greater 

– and therefore mean risk is greater – when Vbn is left out (V = Vbw) (Fig. S1 c, d), because its inclusion makes vulnerability 

less sensitive to changes in beach width. For example, a county that does not nourish could have a narrow beach but a low 30 

Vbn, and therefore a lower vulnerability score than if its vulnerability were only a function of beach width. 

Alongshore mean risk in our model also increases because of a well-documented national trend in exposure (NOAA, 2013). 

Exposure in an individual county may increase or decrease from one decade to the next, but mean exposure along the full 

span of the coast increases over time (NOAA, 2013; Union of Concerned Scientists, 2018). The 51 coastal counties in this 

analysis represent 1.6% of all US counties, but since 1970 have constituted 6.9–9.25% of the total value of all owner-35 

occupied housing units in the country (Fig. S2). Thus, while our data-driven model includes simplifying assumptions, we 

suggest that the increasing risk trends in our findings represent a real phenomenon, since exposure has risen at the coast 
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decade on decade in real terms, and our cumulative beach-nourishment factor both dampens mean vulnerability and 

highlights the reality of long-term risk in counties that nourish continually. 

3.2 Component relationships 

Finally, we compared the statistical distributions of exposure in high- and low-hazard counties, and in high- and low-

intensity nourishing counties (as an aspect of vulnerability), to examine whether the three components of risk, as we 5 

represent them, reflect temporal interrelationships. 

To explore potential relationships between exposure and hazard, we sorted the exposure time series (Fig. 2) into counties 

associated with "high hazard" (eroding shorelines) and "low hazard" (accreting shorelines) for historical and recent shoreline 

change (Figs. 7, 8). We find that exposure increases each decade in zones of high and low hazard, alike, for both historical 

and recent shoreline change (Figs. 7, 8). Under “historical” shoreline-change hazard, exposure of property value is greatest 10 

in zones of high hazard (Fig. 7 a-h, Fig. 8 a). Conversely, exposure to high hazard is relatively low for "recent" shoreline-

change rates (Fig. 7 i-p, Fig 8 d), in part because recent shoreline-change rates tend to be less erosional than their historical 

counterparts (Fig. 3 a). The difference between relative distributions of exposure in high and low hazard zones for historical 

shoreline-change rates increases in significance decade on decade, with a decreasing Kolmogorov-Smirnov p-value that 

reflects the significance of their divergence (Fig. 8 c). There is no such temporal divergence of exposure in high and low 15 

hazard zones for recent shoreline-change rates (Fig. 8 f). 

To explore, in parallel, potential relationships between exposure and vulnerability, we sorted the exposure time series into 

nourishing and non-nourishing counties, and then by the intensity of beach nourishment (high or low) according to whether 

counties fell above or below the 2016 median value of cumulative Vbn (Figs. 9, 10). We find that although exposure increases 

each decade in nourishing and non-nourishing counties, alike, more property is ultimately exposed in nourishing counties. 20 

Moreover, the mean value of that exposed property increases at a greater rate than in non-nourishing counties (Figs. 9 a-h, 10 

a-c). Initially, all property is exposed in counties where nourishment intensity is present but low (their Vbn sits below the 

2016 median) – which we expect, because for counties to accrue enough nourishment events to match the 2016 median 

cumulative-nourishment factor requires time (Fig. 9 i, m). Exposure in intensively nourished counties (counties that accrue 

enough nourishment projects to have Vbn above the 2016 median) shows a marked increase in the 1980s (Fig. 10 d). Total 25 

exposure in intensively nourished counties overtakes total exposure in sparsely nourished counties by the 2010s (Fig. 10 e), 

such that more property ends up exposed in counties where nourishment intensity is high (Figs. 9i – p, 10 d-f). 

Both of these temporal relationships in spatial patterns of exposure and hazard (Fig. 7) and exposure and vulnerability (Fig. 

9) are likely two vantages of same feedback, catalysed by beach nourishment. Higher property value is exposed where 

historical shoreline-change hazard was high (Fig. 7, a–d) and recent shoreline-change hazard is low (Fig. 7, m–p) because 30 

those places also practice relatively intensive use of beach nourishment (Fig. 11). The cumulative effect of beach 

nourishment may be sufficiently strong to mask "true" rates of shoreline change (Armstrong and Lazarus, 2019) – a 

defensive intervention that, by reducing apparent hazard, may spur further development (Fig. 9), increasing exposure and 

creating demand for additional protection (Armstrong et al., 2016). 

 35 
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4 Discussion and implications 

Our data-driven, spatio-temporal model of risk along the US Atlantic Coast produces trajectories that vary in space and, on 

average, rise over time for all four chronic hazard scenarios that we test (Fig. 5). We know from the underlying data that real 

exposure increases over time, but we suggest that our modelled risk trajectories also reflect intrinsic feedbacks between 

hazard, exposure, and vulnerability (Mileti, 1999). We find more property is exposed in counties with "high hazard" 5 

historical shoreline-change rates and "low hazard" recent shoreline-change rates (Figs. 7, 8), and that exposure has increased 

more in places that have practiced beach nourishment intensively (Fig. 9, 10). The spatio-temporal relationships that we 

show between exposure and hazard (Figs. 7, 8) and exposure and vulnerability (Figs. 9, 10) may reflect a feedback between 

coastal development and beach nourishment (Fig. 11) (Armstrong et al., 2016; Armstrong and Lazarus, 2019) – a 

manifestation of the "safe development paradox" (Burby, 2006), in which hazard protections encourage further development 10 

in places prone to hazard impacts (Di Baldassarre et al., 2013; Lazarus et al., 2016; McNamara et al., 2015; Mileti, 1999; 

Smith et al., 2009; Werner and McNamara, 2007). 

Our model is exploratory, and we reiterate its main caveats. Although there are many kinds of coastal hazard (e.g., storm 

impacts, flooding), we represented "chronic" hazard with shoreline-change rates that are spatially heterogeneous but 

temporally static. An alternative derivation of shoreline change, from sea-level rise rates and simplified shore slopes, varies 15 

in both space and time, and yielded overall results similar to those returned by the "recent" shoreline-change scenario. 

Exposure in our model only accounts for the monetary value of owner-occupied properties in coastal counties, as captured 

by the US Census, thus excluding other potential measures of exposure (e.g., Cutter et al., 2006, 2008; Neumann et al., 2015; 

NRC, 2014; Samuels and Gouldby, 2009; Strauss et al., 2012) and requiring that we spatially aggregate our analysis to 

county scales. Finally, our measure of vulnerability includes no method of shoreline protection other than beach 20 

nourishment, and its dynamics are underpinned by a set of broad assumptions: that beaches comprise shorelines at the county 

scale; that in 1970, all counties have the same initial beach width; that a beach-nourishment project always restores a beach 

to its full width; and that counties with intensive nourishment programmes may render themselves more vulnerable over time 

by masking a chronic erosion problem (Armstrong and Lazarus, 2019; Pilkey and Cooper, 2014; Woodruff et al., 2018). We 

do not directly address alongshore spatial interactions within or between counties (Lazarus et al., 2011; Ells and Murray, 25 

2012; Lazarus et al., 2016). Despite these assumptions, our model captures temporal interactions among the components of 

risk that ultimately yield large-scale spatial patterns similar to those identified in recent, fully empirical studies (Armstrong 

and Lazarus, 2019; Armstrong et al., 2016). 

We suggest that models intended to test different coastal management policies, interventions, and scenarios should aim to 

include feedbacks between hazard, exposure and vulnerability. In our data-driven model, traces of these feedbacks – and 30 

perhaps others – are likely embedded in the data we use. More detailed work at the intersection of theory and empiricism is 

necessary to resolve how feedbacks between hazard, exposure, and vulnerability dynamically affect each component of risk, 

and to explore how different management interventions may mitigate – or exacerbate – the “safe development paradox”. 
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Figures 

 
Figure 1: Evolution of risk (a function of hazard, exposure, and vulnerability) modelled at the (a) county scale along the US Atlantic 

Coast, from 1970–2016. Hazard in this simulation reflects historical erosion rates. County width is scaled by shoreline length. Note that 

risk in Norfolk County, MA, exceeds the maximum scale bar value of 0.15 (2016 risk = 0.418; see Table 1). (b) Mean risk through time, 5 
calculated from (a).  

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-159
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 24 May 2019
c© Author(s) 2019. CC BY 4.0 License.



15 
 

 
Figure 2. Columns show hazard, exposure, and vulnerability components and resulting risk. Each row of panels illustrates a different rate 
of shoreline change (i.e., hazard condition): (a–d) historical, (e–h) recent, and (i–l) long-term. Risk in Norfolk County, MA, exceeds the 
maximum scale bar value of 0.15 (2016 risk = 0.418; see Table 1).. 

 5 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-159
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 24 May 2019
c© Author(s) 2019. CC BY 4.0 License.



16 
 

 

Figure 3. Evolution over time of alongshore mean risk components – (a) hazard, (b) exposure, and (c) vulnerability – and the resulting (d) 
mean risk, given historical (solid black), recent (dashed black), and long-term (dotted black) shoreline-change rates as hazard conditions. 

 

 5 
Figure 4. County-scale component (a) hazard, (b) exposure, (c) vulnerability and (d) overall risk evolution over time, and (e–h) 
corresponding means, using shoreline-change rates derived from sea-level change as the hazard condition. 
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Figure 5. Comparative evolution of mean risk over time under different representations of shoreline-change rate (hazard condition): 
historical (solid black), recent (dashed black), long-term (dotted black), and sea-level-derived (red). 

 
Figure 6. Evolution of (a–c) mean components and (d) risk for Plymouth County, Massachusetts, and (e–h) Ocean County, New Jersey. 5 
Line type indicates results under a given hazard condition. Note that the vulnerability time series for Ocean County (panel g) shows the 
"ratchet effect" of cumulative vulnerability from repeated beach nourishment episodes. 
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Figure 7. Distribution of exposed property, by decade, under (a–h) high and low historical and (i–p) high and low recent shoreline-change 
hazard. "High" hazard here is a value greater than 0.272 (the normalised value for a shoreline-change rate of zero); "low" hazard is a value 
greater than 0.272. High hazard therefore indicates erosion, and low hazard indicates accretion. 
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Figure 8. Comparisons of property exposed to high and low (a–c) historical and (d–f) recent shoreline-change hazard, from Figure 7. 
Columns show mean exposure each decade, the relative difference between mean exposure to high and low hazard each decade, and the 
Kolmogorov-Smirnov p-value for the difference in distributions each decade. All p-values indicate that the distributions are statistically 
distinct (i.e., a rejection of the null hypothesis that the distributions are sampled from the same parent distribution). 5 
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Figure 9. Distribution of exposed property, by decade, (a–h) in counties that have and have not nourished, and (i–p) in counties that have 
nourished above and below the 2016 median cumulative beach-nourishment index (Vbn = 0.168). The 2016 median Vbn denotes the 
normalised value of the overall median cumulative number of nourishments across the domain. 
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Figure 10. Comparisons of property exposed (a–c) in counties that have and have not nourished, and (d–f) counties that have nourished 
more or less than the 2016 median Vbn. Columns show mean exposure each decade, total exposure each decade, and the Kolmogorov-
Smirnov p-value indicating the relative difference in exposure distributions each decade for each condition (nourished versus non-
nourished; above versus below median Vbn). All p-values indicate that the distributions are statistically distinct (i.e., a rejection of the null 5 
hypothesis that the distributions are sampled from the same parent distribution). 

 
Figure 11. Cumulative beach-nourishment index (Vbn), as of 2016, at transects (across all counties) that express both high "historical" and 
low "recent" rates of shoreline erosion (see Fig. 7, a–d and m–p). Dotted line indicates the overall median Vbn = 0.168 in 2016 for the full 
domain. For this component distribution, median Vbn = 0.178 (mean = 0.251). This spatial correspondence between a major reversal in 10 
shoreline-change trend (from erosion to accretion) and above-average nourishment intensity is an indication of a coupling between chronic 
erosion (hazard) and defensive intervention (vulnerability). 
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Tables 

Table 1. Counties ranked by risk in 2016, calculated with historic, long-term, recent, and sea-level-derived shoreline-change rates. 

 
Historical		

	  
Long-term		

	  
Recent		

	  

Sea-level-
derived	

	  
Rank	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	

1	 Norfolk	 MA	 0.4176	 Sussex	 DE	 0.1303	 Essex	 MA	 0.1451	 Cape	May	 NJ	 0.0995	

2	 Sussex	 DE	 0.1456	 Jasper	 SC	 0.1176	 Liberty	 GA	 0.1304	 Sussex	 DE	 0.0899	

3	 Plymouth	 MA	 0.1427	 Liberty	 GA	 0.1171	 Accomack	 VA	 0.1130	 Miami-Dade	 FL	 0.0809	

4	 Northampton	 VA	 0.1400	 Hyde	 NC	 0.0999	 Sussex	 DE	 0.1010	 Palm	Beach	 FL	 0.0807	

5	 Jasper	 SC	 0.1382	 Dukes	 MA	 0.0946	 Bristol	 MA	 0.0867	 Queens	 NY	 0.0763	

6	 Hyde	 NC	 0.1328	 Nantucket	 MA	 0.0924	 Nantucket	 MA	 0.0790	 Duval	 FL	 0.0661	

7	 Nantucket	 MA	 0.1026	 Beaufort	 SC	 0.0828	 Palm	Beach	 FL	 0.0696	 Monmouth	 NJ	 0.0647	

8	 Liberty	 GA	 0.1009	 Virginia	Beach	 VA	 0.0808	 Currituck	 NC	 0.0682	 Virginia	Beach	 VA	 0.0640	

9	 Dukes	 MA	 0.1008	 Palm	Beach	 FL	 0.0806	 Queens	 NY	 0.0642	 Norfolk	 MA	 0.0637	

10	 Beaufort	 SC	 0.1002	 Northampton	 VA	 0.0798	 Barnstable	 MA	 0.0634	 New	Hanover	 NC	 0.0621	

11	 Charleston	 SC	 0.0953	 Cape	May	 NJ	 0.0787	 Brunswick	 NC	 0.0497	 Suffolk	 NY	 0.0613	

12	 Virginia	Beach	 VA	 0.0949	 Charleston	 SC	 0.0732	 New	Hanover	 NC	 0.0488	 Brunswick	 NC	 0.0529	

13	 Palm	Beach	 FL	 0.0940	 Monmouth	 NJ	 0.0700	 Atlantic	 NJ	 0.0435	 Martin	 FL	 0.0512	

14	 Monmouth	 NJ	 0.0895	 New	Hanover	 NC	 0.0700	 Brevard	 FL	 0.0420	 Beaufort	 SC	 0.0495	

15	 Barnstable	 MA	 0.0841	 Suffolk	 NY	 0.0618	 Washington	 RI	 0.0419	 Charleston	 SC	 0.0490	

16	 Miami-Dade	 FL	 0.0758	 Brunswick	 NC	 0.0610	 Indian	River	 FL	 0.0412	 Atlantic	 NJ	 0.0484	

17	 Ocean	 NJ	 0.0737	 Ocean	 NJ	 0.0583	 Virginia	Beach	 VA	 0.0405	 Horry	 SC	 0.0483	

18	 New	Hanover	 NC	 0.0711	 Martin	 FL	 0.0549	 Colleton	 SC	 0.0403	 Nassau	 FL	 0.0467	

19	 Cape	May	 NJ	 0.0711	 Norfolk	 MA	 0.0542	 Charleston	 SC	 0.0389	 Essex	 MA	 0.0463	

20	 Martin	 FL	 0.0708	 Queens	 NY	 0.0514	 Cape	May	 NJ	 0.0366	 Nassau	 NY	 0.0461	

21	 Accomack	 VA	 0.0694	 Miami-Dade	 FL	 0.0497	 Ocean	 NJ	 0.0365	 Brevard	 FL	 0.0456	

22	 Duval	 FL	 0.0692	 Colleton	 SC	 0.0481	 St.	Lucie	 FL	 0.0350	 Broward	 FL	 0.0453	

23	 Brunswick	 NC	 0.0690	 Barnstable	 MA	 0.0460	 Pender	 NC	 0.0350	 Bristol	 MA	 0.0444	

24	 Essex	 MA	 0.0639	 Plymouth	 MA	 0.0457	 Martin	 FL	 0.0330	 Volusia	 FL	 0.0439	

25	 Suffolk	 NY	 0.0596	 Duval	 FL	 0.0437	 Carteret	 NC	 0.0328	 Plymouth	 MA	 0.0438	

26	 Colleton	 SC	 0.0578	 Essex	 MA	 0.0427	 Suffolk	 NY	 0.0308	 Ocean	 NJ	 0.0395	

27	 Horry	 SC	 0.0545	 Brevard	 FL	 0.0419	 Dare	 NC	 0.0302	 Washington	 RI	 0.0382	

28	 Bristol	 MA	 0.0484	 Washington	 RI	 0.0411	 Norfolk	 MA	 0.0296	 Barnstable	 MA	 0.0380	

29	 Broward	 FL	 0.0468	 Bristol	 MA	 0.0397	 Beaufort	 SC	 0.0287	 St.	Johns	 FL	 0.0376	

30	 Brevard	 FL	 0.0455	 Horry	 SC	 0.0377	 Broward	 FL	 0.0282	 Indian	River	 FL	 0.0372	

31	 Queens	 NY	 0.0415	 Broward	 FL	 0.0377	 Worcester	 MD	 0.0271	 Glynn	 GA	 0.0371	

32	 Currituck	 NC	 0.0408	 St.	Lucie	 FL	 0.0354	 Horry	 SC	 0.0252	 Carteret	 NC	 0.0369	

33	 St.	Lucie	 FL	 0.0402	 Indian	River	 FL	 0.0350	 Monmouth	 NJ	 0.0225	 Pender	 NC	 0.0360	

34	 Pender	 NC	 0.0370	 Dare	 NC	 0.0348	 Dukes	 MA	 0.0223	 Colleton	 SC	 0.0321	

35	 Washington	 RI	 0.0364	 Accomack	 VA	 0.0346	 Volusia	 FL	 0.0190	 Chatham	 GA	 0.0321	

36	 Dare	 NC	 0.0364	 Carteret	 NC	 0.0333	 Nassau	 NY	 0.0161	 St.	Lucie	 FL	 0.0318	

37	 Worcester	 MD	 0.0346	 Worcester	 MD	 0.0323	 Onslow	 NC	 0.0157	 Worcester	 MD	 0.0312	

38	 Indian	River	 FL	 0.0344	 Pender	 NC	 0.0317	 St.	Johns	 FL	 0.0156	 Dukes	 MA	 0.0275	

39	 Nassau	 NY	 0.0314	 Currituck	 NC	 0.0315	 Georgetown	 SC	 0.0155	 Nantucket	 MA	 0.0274	

40	 Glynn	 GA	 0.0311	 Atlantic	 NJ	 0.0303	 Chatham	 GA	 0.0143	 Dare	 NC	 0.0253	

41	 Nassau	 FL	 0.0276	 Volusia	 FL	 0.0299	 Miami-Dade	 FL	 0.0079	 Hyde	 NC	 0.0190	

42	 Volusia	 FL	 0.0271	 St.	Johns	 FL	 0.0287	 McIntosh	 GA	 0.0057	 Georgetown	 SC	 0.0188	

43	 Atlantic	 NJ	 0.0268	 Nassau	 NY	 0.0222	 Glynn	 GA	 0.0011	 Onslow	 NC	 0.0132	

44	 St.	Johns	 FL	 0.0260	 Glynn	 GA	 0.0184	 Plymouth	 MA	 0.0010	 Camden	 GA	 0.0083	
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Historical		

	  
Long-term		

	  
Recent		

	  

Sea-level-
derived	

	  
Rank	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	

45	 Carteret	 NC	 0.0248	 Georgetown	 SC	 0.0182	 Nassau	 FL	 0.0008	 Northampton	 VA	 0.0078	

46	 Flagler	 FL	 0.0223	 Nassau	 FL	 0.0170	 Hyde	 NC	 0.0006	 Jasper	 SC	 0.0069	

47	 Georgetown	 SC	 0.0206	 Onslow	 NC	 0.0128	 Flagler	 FL	 0	 Liberty	 GA	 0.0061	

48	 Onslow	 NC	 0.0136	 Chatham	 GA	 0.0007	 Duval	 FL	 0	 Accomack	 VA	 0.0058	

49	 Chatham	 GA	 0.0005	 Flagler	 FL	 0	 Camden	 GA	 0	 McIntosh	 GA	 0.0053	

50	 Camden	 GA	 0	 Camden	 GA	 0	 Jasper	 SC	 0	 Currituck	 NC	 0.0050	

51	 McIntosh	 GA	 0	 McIntosh	 GA	 0	 Northampton	 VA	 0	 Flagler	 FL	 0.0021	
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